RODİNBELL

S-703

八通道超高频读写器

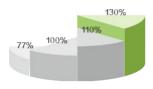
1. 产品特性

1 射拔芯片采用Impinj E710		特性	描述		
お演取少量标签优化的算法	1	射频芯片采用Impinj E710	射频通道基于Impinj性能优异的专用UHF RFID芯片。		
超高的标签反应速度。	2	高性能多标签识别算法	独一无二的I-Search多标签识别算法,提供业内最高识别效率。		
超高的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 主CPU负责的标益反应速度。 能问好负责产生真正的能机数。 能CPU负责的显控系统的运行状态。 高速轮调8天线。每个天线量短轮询时间约75mS。 可单独配置各天线的轮询时间。 标签实时盘存模式 实时模式该到标签后立即上传,用户可第一时间得到标签数据。 硬件死机监测 经性监观CPU运行状态。 24小时×365天常年运行不免机。 据测射频功率放大器的工作状态。 3 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 可保护接收机。 可通过命令关闭。 作质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 多点版载温度传感器 多点监测,精确的监控系统的运行温度。 保证别频输出功率特确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于中口的指令系统 简洁高效的指令系统 简洁高效的指令系统 流流,高效,方便,快速集成。 发热器件全部具有导标结构。 大面积的散热设计 热耦合界面采用高热导率的固体材料,高温下不挥发。	2	为读取少量标签优化的算法	专为读取少量标签的应用设计的算法。		
对方的时间。极大的提高了整体性能。	3		超高的标签反应速度。		
副CPU负责监控系统的运行状态。	,	双CPU架构设计			
高速轮询8天线。每个天线最短轮询时间约25mS。 可单独配置各天线的轮询时间。 6 标签实时盘存模式 实时模式读到标签后立即上传,用户可第一时间得到标签数据。 使件选测CPU运行状态。 24小时×365天常年运行不死机。 8 射频放大器状态监测 监测射频功率放大器的工作状态。 9 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 10 天线连接状态监测 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 13 双备份输出功率校正 两个互相备份的功率权验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	4		副CPU负责产生真正的随机数。		
5 快速8天线轮询功能 可单独配置各天线的轮询时间。 6 标签实时盘存模式 实时模式读到标签后立即上传,用户可第一时间得到标签数据。 7 硬件死机监测 硬件监测CPU运行状态。 24小时×365天常年运行不死机。 8 射频放大器状态监测 监测射频功率放大器的工作状态。 9 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 10 天线连接状态监测 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 13 双备份输出功率校正			副CPU负责监控系统的运行状态。		
可单独配置各天线的轮询时间。 6 标签实时盘存模式 实时模式读到标签后立即上传,用户可第一时间得到标签数据。 7 硬件先测CPU运行状态。 24小时×365天常年运行不死机。 8 射频放大器状态监测 监测射频功率放大器的工作状态。 9 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 10 天线连接状态监测 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板或温度传感器 多点监测,精确的监控系统的运行温度。 13 双备份输出功率校正 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	5	快速8天线轮询功能	高速轮询8天线。每个天线最短轮询时间约25mS。		
7 硬件死机监测 8 射频放大器状态监测 9 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 10 天线连接状态监测 可通过命令关闭。 11 优质的连接器系统 2 多点板载温度传感器 2 多点板载温度传感器 3 双备份输出功率校正 13 双备份输出功率校正 6 展工引频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 6 基于串口的指令系统。 6 发热器件全部具有导热结构。 大面积的散热片接触面。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	3		可单独配置各天线的轮询时间。		
7	6	标签实时盘存模式	实时模式读到标签后立即上传,用户可第一时间得到标签数据。		
24小时×365天常年运行不死机。 8 射频放大器状态监测 监测射频功率放大器的工作状态。 9 实现18000-6C协议功能 可快速在读18000-6C协议标签。 判断天线连接状态。 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 2 多点版载温度传感器 多点监测,精确的监控系统的运行温度。 (保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁高效的指令系统 意洁,高效,方便,快速集成。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	7	硬件死机监测	硬件监测CPU运行状态。		
9 实现18000-6C协议功能 可快速在读18000-6C协议标签。	/		24小时×365天常年运行不死机。		
判断天线连接状态。 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 2 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 (保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 (简洁高效的指令系统) (简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	8	射频放大器状态监测	监测射频功率放大器的工作状态。		
10 天线连接状态监测 可保护接收机。 可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 13 双备份输出功率校正 保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	9	实现18000-6C协议功能	可快速在读18000-6C协议标签。		
可通过命令关闭。 11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 (保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。		天线连接状态监测	判断天线连接状态。		
11 优质的连接器系统 全部使用最好的名牌连接器,保证可靠连接。 12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 (保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	10		可保护接收机。		
12 多点板载温度传感器 多点监测,精确的监控系统的运行温度。 R证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁高效的指令系统 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。			可通过命令关闭。		
日3 双备份输出功率校正 保证射频输出功率精确可控。 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁高效的指令系统 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	11	优质的连接器系统	全部使用最好的名牌连接器,保证可靠连接。		
13 双备份输出功率校正 两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁高效的指令系统 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。	12	多点板载温度传感器	多点监测,精确的监控系统的运行温度。		
两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。 基于串口的指令系统。 简洁高效的指令系统。 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热耦合界面采用高热导率的固体材料,高温下不挥发。		双备份输出功率校正	保证射频输出功率精确可控。		
14 简洁高效的指令系统 简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 热出的散热设计 热耦合界面采用高热导率的固体材料,高温下不挥发。	13		两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。		
简洁,高效,方便,快速集成。 发热器件全部具有导热结构。 大面积的散热片接触面。 杰出的散热设计 热耦合界面采用高热导率的固体材料,高温下不挥发。		简洁高效的指令系统	基于串口的指令系统。		
大面积的散热片接触面。 15 杰出的散热设计 热耦合界面采用高热导率的固体材料,高温下不挥发。	14		简洁,高效,方便,快速集成。		
15 杰出的散热设计 热耦合界面采用高热导率的固体材料,高温下不挥发。	15	杰出的散热设计	发热器件全部具有导热结构。		
热耦合界面采用高热导率的固体材料,高温下不挥发。			大面积的散热片接触面。		
CNC铝合金机身。长期连续工作不发执			热耦合界面采用高热导率的固体材料,高温下不挥发。		
○ 10月日至1027 区初走大工ITT 区流位			CNC铝合金机身,长期连续工作不发热。		

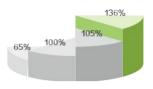
2. 产品视图

S-703后视图

S-703前视图



S-703俯视图


3. 电气参数

	电气参数表
尺寸	198(L)*198(W)*26(H)mm
重量	1.3kg
机身材料	铝合金
输入电压	DC 12V ~ 18V
待机状态电流	<80mA
睡眠状态电流	<100uA
最大工作电流	700mA +/-5% @ DC 12V Input
工作温度	- 20 °C ~ + 85 °C
存储温度	- 40 °C ~ + 85 °C
环境湿度	5%RH~95%RH (无凝露)
空中接口协议	EPC global UHF Class 1 Gen 2 / ISO 18000-6C
Impinj Gen2X	支持
工作频谱范围	902MHz − 928MHz , 865MHz − 868MHz
工作区域支持	US, Canada and other regions following U.S. FCC Europe and other regions following ETSI EN 302 208 China , Korea , Malaysia
输出功率	0 – 33dBm
输出射频连接器	TNC/RP-TNC
输出功率精度	+/- 1dB
输出功率平坦度	+/- 0.2dB
接收灵敏度	< -88 dBm
盘存标签峰值速度	>900 张/秒
标签RSSI	支持
天线连接保护	支持
环境温度监测	支持
工作模式	单机 / 密集型
通讯接口	RS-232 或 TCP/IP
GPIO	2路输入光耦合 2路输出光耦合
最高通讯波特率	38400 bps , 115200 bps (默认和推荐) , 921600bps
散热方式	空气冷却

4. 不同的算法对多标签识别性能的影响

100标签

200标签

说明: (1) 上图是实测的性能对比图(以英频杰动态Q防冲突算法作为比较的标准)。

- (2) 上图体现的是首轮盘存的性能对比。
- (3) 在同一硬件平台上更换不同的算法进行的测试。

算法名称	算法说明	
	• 18000-6C协议的标准算法	
标准固定Q防冲突算法	• 标签数量多的时候性能显著下降	
	• 标签数量少的时候效率不高	
	• 美国IMPINJ公司的算法	
英频杰动态Q防冲突算法	• 标签数量多或者少的时候都有良好的效率	
	• 为了兼容的需要牺牲了一部分性能	
	• 基于美国IMPINJ公司的动态Q算法	
I-Search 动态Q防冲突算法 V1.0	• 经过优化后性能略有提高	
	• 固件版本6.6及以下均采用此算法	
	• 基于美国IMPINJ公司的动态Q算法	
	• 全新的数据模型,性能得到大幅提升	
I-Search 动态Q防冲突算法 V2.0	• 固件版本6.7及以上均采用此算法	
	• 可明显感受到与传统算法的差异	
	• 标签数量多的时候性能差异更明显	

5. 接口定义


PIN ID	功能描述	等效电路	使用说明
PIN 1	GPIO 1 输入 +		• Voltage between PIN 1,2 (PIN 3,4) <=12V
PIN 2	GPIO 1 输入 -		• 有极性
PIN 3	GPIO 2 输入 +		• LED等效电阻470欧
PIN 4	GPIO 2 输入 -	→ →	• 响应时间<= 150us
PIN 5	GPIO 4 输出	5	• Voltage between PIN 5,6 (PIN 7,8)<=12V
PIN 6	GPIO 4 输出	6 个	• 无极性
PIN 7	GPIO 3 输出	1 → 2 ✓ ₹	• 导通电阻110欧
PIN 8	GPIO 3 输出	8	• 响应时间<= 6ms

6. 结构尺寸(单位: MM)

注:下图尺寸若与实物有偏差则以实物为准。

S-703侧视图

S-703俯视图