RODİNBELL

S-702 四通道超高频读写器

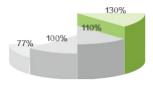
1. 产品特性

	特性	描述	
1	射频芯片采用Impinj E710	射频通道基于Impinj性能优异的专用UHF RFID芯片。	
2	高性能多标签识别算法	独一无二的I-Search多标签识别算法,提供业内最高识别效率。	
3	为读取少量标签优化的算法	专为读取少量标签的应用设计的算法。	
		超高的标签反应速度。	
4	双CPU架构设计	主CPU负责轮询标签,副CPU负责数据管理。轮询标签和发送数据并行, 互不占用对方的时间。极大的提高了整体性能。	
		副CPU负责产生真正的随机数。	
		副CPU负责监控系统的运行状态。	
5	快速4天线轮询功能	高速轮询4天线。每个天线最短轮询时间约25mS。	
J		可单独配置各天线的轮询时间。	
6	标签盘存模式	实时模式读到标签后立即上传,用户可第一时间得到标签数据。	
_	硬件死机监测	硬件监测CPU运行状态。	
7		24小时×365天常年运行不死机。	
8	射频放大器状态监测	监测射频功率放大器的工作状态。	
0		确保功放不出现饱和状态。保证功放长久稳定工作。	
9	实现18000-6C协议功能	可快速在读18000-6C协议标签。	
10	天线连接状态监测	判断天线连接状态。	
		可保护接收机。	
		可通过命令关闭。	
11	多点板载温度传感器	多点监测,精确的监控系统的运行温度。	
12	双备份输出功率校正	保证射频输出功率精确可控。	
		两个互相备份的功率校验模块。除非同时损坏,系统均可正常运行。	
13	杰出的散热设计	大面积的散热片接触面。	
		热耦合界面采用高热导率的固体材料,高温下不挥发。	

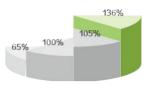
2. 产品视图


S-702后视图

S-702前视图



S-702右视图


3. 电气参数

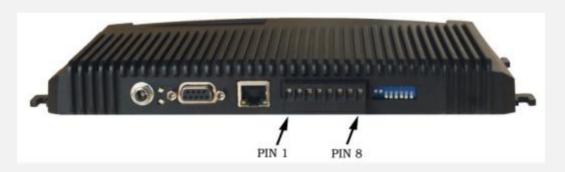
电气参数表				
尺寸	240(L)*180(W)*28(H)mm			
重量	1.2kg			
机身材料	铝合金			
输入电压	DC 12V ~ 18V			
待机状态电流	<80mA			
睡眠状态电流	<100uA			
最大工作电流	700mA +/-5% @ DC 12V Input			
工作温度	- 20 °C ~ + 85 °C			
存储温度	- 40 °C ~ + 85 °C			
环境湿度	5%RH~95%RH (无凝露)			
空中接口协议	EPC global UHF Class 1 Gen 2 / ISO 18000-6C			
Impinj Gen2X	支持			
工作频谱范围	902MHz – 928MHz,865MHz – 868MHz			
工作区域支持	US, Canada and other regions following U.S. FCC Europe and other regions following ETSI EN 302 208 China , Korea , Malaysia			
输出功率	0 – 33dBm			
输出射频连接器	TNC/RP-TNC			
输出功率精度	+/- 1dB			
输出功率平坦度	+/- 0.2dB			
接收灵敏度	< -88 dBm			
盘存标签峰值速度	>900 张/秒			
标签RSSI	支持			
天线连接保护	支持			
环境温度监测	支持			
工作模式	单机 / 密集型			
通讯接口	RS-232 或 TCP/IP			
GPIO	2路输入光耦合 2路输出光耦合			
最高通讯波特率	38400 bps , 115200 bps (默认和推荐) , 921600bps			
散热方式	空气冷却			

4. 不同的算法对多标签识别性能的影响

100标签

200标签

说明: (1) 上图是实测的性能对比图 (以英频杰动态Q防冲突算法作为比较的标准)。


- (2) 上图体现的是首轮盘存的性能对比。
- (3) 在同一硬件平台上更换不同的算法进行的测试。

算法名称	算法说明
	• 18000-6C协议的标准算法
标准固定Q防冲突算法	• 标签数量多的时候性能显著下降
	• 标签数量少的时候效率不高
	• 美国IMPINI公司的算法
英频杰动态Q防冲突算法	• 标签数量多或者少的时候都有良好的效率
	• 为了兼容的需要牺牲了一部分性能
	• 基于美国IMPINJ公司的动态Q算法
I-Search 动态Q防冲突算法 V1.0	• 经过优化后性能略有提高
	• 固件版本6.6及以下均采用此算法
	• 基于美国IMPINJ公司的动态Q算法
	• 全新的数据模型,性能得到大幅提升
I-Search 动态Q防冲突算法 V2.0	• 固件版本6.7及以上均采用此算法
	• 可明显感受到与传统算法的差异
	• 标签数量多的时候性能差异更明显

5. 接口定义

接口定义

PIN ID	功能描述	等效电路	使用说明
PIN 1	GPIO 1 输入 +	→-------------	• Voltage between PIN 1,2 (PIN 3,4) <=12V
PIN 2	GPIO 1 输入 -	~ -	• 有极性
PIN 3	GPIO 2 输入 +	\w\	• LED等效电阻470欧
PIN 4	GPIO 2 输入 -	_	• 响应时间<=150us
PIN 5	GPIO 4 输出	55	• Voltage between PIN 5,6 (PIN 7,8)<=12V
PIN 6	GPIO 4 输出	خ کو	• 无极性
PIN 7	GPIO 3 输出	743 × £	• 导通电阻110欧
PIN 8	GPIO 3 输出	∞ 6.3° − E	• 响应时间<= 6ms

6. 结构尺寸(单位: MM)

注:下图尺寸若与实物有偏差则以实物为准。

